TY - JOUR
T1 - Anabolic effects of testosterone are preserved during inhibition of 5α-reductase
AU - Borst, Stephen E.
AU - Conover, Christine F.
AU - Carter, Christy S.
AU - Gregory, Chris M.
AU - Marzetti, Emanuele
AU - Leeuwenburgh, Christiaan
AU - Vandenborne, Krista
AU - Wronski, Thomas J.
PY - 2007
Y1 - 2007
N2 - At replacement doses, testosterone produces only modest increases in muscle strength and bone mineral density in older hypogonadal men. Although higher doses of testosterone are more anabolic, there is concern over increased adverse effects, notably prostate enlargement. We tested a novel strategy for obtaining robust anabolic effects without prostate enlargement. Orchiectomized (ORX) male rats were treated for 56 days with 1.0 mg testosterone/day, with and without 0.75 mg/day of the 5α-reductase inhibitor MK-434. Testosterone administration elevated the prostate dihydrotestosterone concentration and caused prostate enlargement. Both effects were inhibited by MK-434. ORX produced a catabolic state manifested in reduced food intake, blunted weight gain, reduced hemoglobin concentration, decreased kidney mass, and increased bone resorption, and in the proximal tibia there was both decreased cancellous bone volume and a decreased number of trabeculae. In soleus and extensor digitorum longus muscles, ORX reduced both the percentage of type I muscle fibers and the cross-sectional area of type 1 and 2 fibers. Testosterone administration caused a number of anabolic effects, including increases in food intake, hemoglobin concentration, and grip strength, and reversed the catabolic effects of ORX on bone. Testosterone administration also partially reversed ORX-induced changes in muscle fibers. In contrast to the prostate effects of testosterone, the effects on muscle, bone, and hemoglobin concentration were not blocked by MK-434. Our study demonstrates that the effects of testosterone on muscle and bone can be separated from the prostate effects and provides a testable strategy for combating sarcopenia and osteopenia in older hypogonadal men.
AB - At replacement doses, testosterone produces only modest increases in muscle strength and bone mineral density in older hypogonadal men. Although higher doses of testosterone are more anabolic, there is concern over increased adverse effects, notably prostate enlargement. We tested a novel strategy for obtaining robust anabolic effects without prostate enlargement. Orchiectomized (ORX) male rats were treated for 56 days with 1.0 mg testosterone/day, with and without 0.75 mg/day of the 5α-reductase inhibitor MK-434. Testosterone administration elevated the prostate dihydrotestosterone concentration and caused prostate enlargement. Both effects were inhibited by MK-434. ORX produced a catabolic state manifested in reduced food intake, blunted weight gain, reduced hemoglobin concentration, decreased kidney mass, and increased bone resorption, and in the proximal tibia there was both decreased cancellous bone volume and a decreased number of trabeculae. In soleus and extensor digitorum longus muscles, ORX reduced both the percentage of type I muscle fibers and the cross-sectional area of type 1 and 2 fibers. Testosterone administration caused a number of anabolic effects, including increases in food intake, hemoglobin concentration, and grip strength, and reversed the catabolic effects of ORX on bone. Testosterone administration also partially reversed ORX-induced changes in muscle fibers. In contrast to the prostate effects of testosterone, the effects on muscle, bone, and hemoglobin concentration were not blocked by MK-434. Our study demonstrates that the effects of testosterone on muscle and bone can be separated from the prostate effects and provides a testable strategy for combating sarcopenia and osteopenia in older hypogonadal men.
KW - Body composition
KW - Bone resorption
KW - Dihydrotestosterone
KW - Prostate
KW - Body composition
KW - Bone resorption
KW - Dihydrotestosterone
KW - Prostate
UR - http://hdl.handle.net/10807/219725
U2 - 10.1152/ajpendo.00130.2007
DO - 10.1152/ajpendo.00130.2007
M3 - Article
SN - 0193-1849
VL - 293
SP - 507
EP - 514
JO - AMERICAN JOURNAL OF PHYSIOLOGY: ENDOCRINOLOGY AND METABOLISM
JF - AMERICAN JOURNAL OF PHYSIOLOGY: ENDOCRINOLOGY AND METABOLISM
ER -