Abstract
Background - Cellular studies showed that histone methyltransferase Set7 mediates high glucose-induced inflammation via epigenetic regulation of the transcription factor NF-kB. However, the link between Set7 and vascular dysfunction in patients with diabetes mellitus remains unknown. This study was designed to investigate whether Set7 contributes to vascular dysfunction in patients with type 2 diabetes mellitus (T2DM). Methods and Results - Set7-driven epigenetic changes on NF-kB p65 promoter and expression of NF-kB-dependent genes, cyclooxygenase 2 and inducible endothelial nitric oxide synthase, were assessed in peripheral blood mononuclear cells isolated from 68 subjects (44 patients with T2DM and 24 age-matched controls). Brachial artery flow-mediated dilation, 24-hour urinary levels of 8-isoprostaglandin F2α, and plasma adhesion molecules, intercellular cell adhesion molecule-1 and monocyte chemoattractant protein-1, were also determined. Experiments in human aortic endothelial cells exposed to high glucose were performed to elucidate the mechanisms of Set7-driven inflammation and oxidative stress. Set7 expression increased in peripheral blood mononuclear cells from patients with T2DM when compared with controls. Patients with T2DM showed Set7-dependent monomethylation of lysine 4 of histone 3 on NF-kB p65 promoter. This epigenetic signature was associated with upregulation of NF-kB, subsequent transcription of oxidant/inflammatory genes, and increased plasma levels of intercellular cell adhesion molecule-1 and monocyte chemoattractant protein-1. Interestingly, we found that Set7 expression significantly correlated with oxidative marker 8-isoprostaglandin F2α (r=0.38; P=0.01) and flow-mediated dilation (r=-0.34; P=0.04). In human aortic endothelial cells, silencing of Set7 prevented monomethylation of lysine 4 of histone 3 and abolished NF-kB-dependent oxidant and inflammatory signaling. Conclusions-Set7-induced epigenetic changes contribute to vascular dysfunction in patients with T2DM. Targeting this chromatin-modifying enzyme may represent a novel therapeutic approach to prevent atherosclerotic vascular disease in this setting.
Lingua originale | English |
---|---|
pagine (da-a) | 150-158 |
Numero di pagine | 9 |
Rivista | Circulation: Cardiovascular Genetics |
Volume | 8 |
DOI | |
Stato di pubblicazione | Pubblicato - 2015 |
Keywords
- Adult
- Aged
- Cardiology and Cardiovascular Medicine
- Cells, Cultured
- Diabetes Mellitus, Type 2
- Diabetes mellitus
- Diabetic Angiopathies
- Endothelial Cells
- Epigenesis, Genetic
- Epigenomics
- Female
- Genetics
- Genetics (clinical)
- Histone-Lysine N-Methyltransferase
- Humans
- Inflammation
- Male
- Middle Aged
- Oxidative stress
- Promoter Regions, Genetic
- Transcription Factor RelA