TY - JOUR
T1 - Activin regulates betaA-subunit and activin receptor messenger ribonuclic acid and cellular proliferation in activin-responsive testicular tumor cells
AU - Di Simone, Nicoletta
AU - Hall, Ha
AU - Welt, C
AU - Schneyer, Al
PY - 1998
Y1 - 1998
N2 - Activin, a member of the transforming growth factor-beta superfamily of growth and differentiation factors, has a number of actions in embryonic as well as adult tissues. These actions are mediated via a family of receptors containing two subtypes and at least two members of each subtype. Recent evidence demonstrates that activin-responsive cell lines containing different subsets of these receptors are valuable models for dissecting functional relationships among receptor subtype, signal transduced, and response obtained. TT cells, derived from a p53(-/-)/alpha-inhibin(-/-) mouse testicular tumor, respond to activin by proliferating, a response that can be inhibited by follistatin (FS) treatment. Using semiquantitative RT-PCR methods, we characterized steady state messenger RNA (mRNA) levels for the inhibin/activin subunits, FS, and activin receptor subtypes under basal conditions and in the presence of activin or FS. These cells produced ample immunoreactive activin A and FS, necessitating higher treatment doses to observe any modulation of cellular proliferation. Furthermore, in the presence of exogenous activin, mRNA levels for activin receptor type IIA (ACTRIIA) and betaA were significantly and profoundly suppressed. In addition, both ACTR1B and ACTRIIB were detectable and down-regulated by exogenous activin, although not to the degree observed for ACTRIIA and betaA. Finally, activin treatment at the higher doses, which decreased activin receptor mRNA levels, resulted in inhibition of cellular proliferation. Taken together with previous observations, our results support the model that these tumor cells respond to an autocrine activin signal by proliferating, whereas exogenous or excess activin results in down-regulation of activin receptor and activin biosynthesis, suggesting a potential autocrine/paracrine mechanism by which activin can modulate its own signal
AB - Activin, a member of the transforming growth factor-beta superfamily of growth and differentiation factors, has a number of actions in embryonic as well as adult tissues. These actions are mediated via a family of receptors containing two subtypes and at least two members of each subtype. Recent evidence demonstrates that activin-responsive cell lines containing different subsets of these receptors are valuable models for dissecting functional relationships among receptor subtype, signal transduced, and response obtained. TT cells, derived from a p53(-/-)/alpha-inhibin(-/-) mouse testicular tumor, respond to activin by proliferating, a response that can be inhibited by follistatin (FS) treatment. Using semiquantitative RT-PCR methods, we characterized steady state messenger RNA (mRNA) levels for the inhibin/activin subunits, FS, and activin receptor subtypes under basal conditions and in the presence of activin or FS. These cells produced ample immunoreactive activin A and FS, necessitating higher treatment doses to observe any modulation of cellular proliferation. Furthermore, in the presence of exogenous activin, mRNA levels for activin receptor type IIA (ACTRIIA) and betaA were significantly and profoundly suppressed. In addition, both ACTR1B and ACTRIIB were detectable and down-regulated by exogenous activin, although not to the degree observed for ACTRIIA and betaA. Finally, activin treatment at the higher doses, which decreased activin receptor mRNA levels, resulted in inhibition of cellular proliferation. Taken together with previous observations, our results support the model that these tumor cells respond to an autocrine activin signal by proliferating, whereas exogenous or excess activin results in down-regulation of activin receptor and activin biosynthesis, suggesting a potential autocrine/paracrine mechanism by which activin can modulate its own signal
KW - activin
KW - activin
UR - http://hdl.handle.net/10807/22219
U2 - 10.210/en.139.3.1147
DO - 10.210/en.139.3.1147
M3 - Article
SN - 0013-7227
SP - 1147
EP - 1155
JO - Endocrinology
JF - Endocrinology
ER -