Activation of heme oxygenase and consequent carbon monoxide formation inhibits the release of arginine vasopressin from rat hypothalamic explants. Molecular linkage between heme catabolism and neuroendocrine function

Cesare Mancuso, Paolo Preziosi, Pierluigi Navarra, I Kostoglou Athanassiou, M. L Forsling, A. B Grossman, G. Minotti

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

55 Citazioni (Scopus)

Abstract

Heme oxygenase (HO)-catalyzed degradation of cellular heme moieties generates biliverdin and equimolar amounts of carbon monoxide (CO), which has been implicated as a possible modulator of neural function. Technical difficulties preclude direct measurements of CO within intact nervous tissues; hence, alternative procedures are needed to monitor the formation and possible biologic functions of this gas. In the present study rat hypothalamic explants were found to generate 114 +/- 5 or 127 +/- 11 pmol biliverdin/hypothalamus/1 h (n = 3) upon incubation with 1 or 10 microM hemin, respectively. Ten micromolar zinc-protoporphyrin IX (Zn-PP-IX), a known inhibitor of HO, significantly decreased the degradation of 10 microM hemin from 127 +/- 11 to 26 +/- 11 pmol biliverdin/hypothalamus/1 h (n = 3; P < 0.01). Biliverdin was the principal product of HO-dependent heme degradation, as its possible conversion into bilirubin was precluded by hemin-dependent inhibition of biliverdin reductase. Basal or hemin-supplemented hypothalamic incubations were also shown to generate sizable amounts of propentdyopents (PDPs), reflecting HO-independent degradation pathways which do not liberate CO and cannot be inhibited by Zn-PP-IX. Plotting the ratio of biliverdin to PDPs thus provided an index of the efficiency with which hemin was degraded through biochemical pathways involving CO. Under the experimental conditions of our study, the biliverdin/PDPs ratio varied from 0 to 32 or 15%, depending on the absence or presence of 1 or 10 microM hemin respectively: this suggested that the formation of CO was most efficient at 1 microM hemin. Under these defined conditions, 1 microM hemin was also found to inhibit the release of arginine vasopressin (AVP) evoked by depolarizing solutions of KCl. A series of experiments showed that the effect of hemin was counteracted by Zn-PP-IX, and also by tin-mesoporphyrin IX, which is even more selective in inhibiting HO; it was also attenuated in the presence of the gaseous scavenger ferrous hemoglobin. Furthermore, the inhibition of AVP release could be reproduced by omitting hemin and by incubating hypothalami under CO, whereas treatment with biliverdin had no effect. This suggested that the release of AVP was suppressed by HO degradation of hemin, yielding CO as a modulator of hypothalamic function. These observations may be relevant to diseases characterized by inappropriate secretion of AVP and enzymatic disturbances affecting the synthesis of heme and the formation of CO through the HO pathway (e.g., acute intermittent porphyria or lead intoxication).
Lingua originaleEnglish
pagine (da-a)267-276
Numero di pagine10
RivistaMolecular Brain Research
Volume50
Stato di pubblicazionePubblicato - 1997

Keywords

  • Animals
  • Arginine Vasopressin
  • Bilirubin
  • Biliverdine
  • Carbon Monoxide
  • Enzyme Activation
  • Heme
  • Heme Oxygenase (Decyclizing)
  • Hemin
  • Hypothalamus
  • In Vitro Techniques
  • Male
  • Neurosecretory Systems
  • Oxidoreductases
  • Oxidoreductases Acting on CH-CH Group Donors
  • Rats
  • Rats, Wistar

Fingerprint

Entra nei temi di ricerca di 'Activation of heme oxygenase and consequent carbon monoxide formation inhibits the release of arginine vasopressin from rat hypothalamic explants. Molecular linkage between heme catabolism and neuroendocrine function'. Insieme formano una fingerprint unica.

Cita questo