A Wasserstein approach to the numerical solution of the one-dimensional Cahn-Hilliard equation

Giovanni Naldi, Fausto Cavalli

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

9 Citazioni (Scopus)

Abstract

In this work we introduce a new numerical approach for solving Cahn-Hilliard equation with Neumann boundary conditions involving recent mass transportation methods. The numerical scheme is based on an alternative formulation of the problem using the so called pseudo-inverse of the cumulative distribution function. We establish a stable fully discrete scheme that inherits the energy dissipation and mass conservation from the associated continuous problem. We perform some numerical experiments which confirm our results.
Lingua originaleEnglish
pagine (da-a)123-142
Numero di pagine20
RivistaKinetic and Related Models
Volume3
DOI
Stato di pubblicazionePubblicato - 2010

Keywords

  • Cahn-Hilliard equation
  • Pseudo-inverse function
  • Stable numerical methods for fourth order equations

Fingerprint

Entra nei temi di ricerca di 'A Wasserstein approach to the numerical solution of the one-dimensional Cahn-Hilliard equation'. Insieme formano una fingerprint unica.

Cita questo