A tool for assessing weak identifiability of statistical models

A. Di Noia, Francesco Denti*, A. Mira

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in libroContributo a convegno

Abstract

The notion of identifiability has a long history in the statistical literature, with econo- metrics providing the first theoretical contributions. On the one hand, within the frequentist paradigm, identifiability represents a critical issue to tackle, closely tied to the feasibility of the model estimation. On the other hand, identifiability issues in the Bayesian frame- work could be overcome by complementing the non-identifiable likelihood with additional prior beliefs summarized via an informative prior distribution. Unfortunately, since esti- mation is still feasible, unidentifiabily may remain unnoticed and silently hinder posterior consistency. This contribution provides a tool to inspect whether the model specification is weakly identified. Our procedure is based on estimating the intrinsic dimension of posterior samples. The methodology is illustrated with a simulated example.
Lingua originaleEnglish
Titolo della pubblicazione ospiteBook of the Short Papers SEAS IN 2023
Pagine1230-1234
Numero di pagine5
Stato di pubblicazionePubblicato - 2023
EventoSIS 2023 - Statistical Learning, Sustainability and Impact Evaluation - Ancona
Durata: 21 giu 202323 giu 2023

Convegno

ConvegnoSIS 2023 - Statistical Learning, Sustainability and Impact Evaluation
CittàAncona
Periodo21/6/2323/6/23

Keywords

  • Identifiability
  • Monte Carlo Markov Chain
  • Bayesian models
  • Intrinsic Dimension

Fingerprint

Entra nei temi di ricerca di 'A tool for assessing weak identifiability of statistical models'. Insieme formano una fingerprint unica.

Cita questo