A surgery result for the spectrum of the Dirichlet Laplacian

Dorin Bucur, Dario Cesare Severo Mazzoleni

Risultato della ricerca: Contributo in rivistaArticolopeer review

6 Citazioni (Scopus)

Abstract

In this paper we give a method to geometrically modify an open set such that the first k eigenvalues of the Dirichlet Laplacian and its perimeter are not increasing, its measure remains constant, and both perimeter and diameter decrease below a certain threshold. The key point of the analysis relies on the properties of the shape subsolutions for the torsion energy. As well, we apply this result to prove existence of solutions for shape optimization problems of spectral type with both measure and perimeter constraints.
Lingua originaleInglese
pagine (da-a)4451-4466
Numero di pagine16
RivistaSIAM Journal on Mathematical Analysis
Volume47
DOI
Stato di pubblicazionePubblicato - 2015

Keywords

  • Analysis
  • Applied Mathematics
  • Computational Mathematics
  • Dirichlet Laplacian
  • Eigenvalues
  • Shape optimization

Fingerprint

Entra nei temi di ricerca di 'A surgery result for the spectrum of the Dirichlet Laplacian'. Insieme formano una fingerprint unica.

Cita questo