A semantic knowledge discovery framework for detecting online terrorist networks

Andrea Ciapetti, Giulia Ruggiero, Daniele Toti

Risultato della ricerca: Contributo in libroContributo a convegno

Abstract

This paper presents a knowledge discovery framework, with the purpose of detecting terrorist presence in terms of potential suspects and networks on the open and Deep Web. The framework combines information extraction methods and tools and natural language processing techniques, together with semantic information derived from social network analysis, in order to automatically process online content coming from disparate sources and identify people and relationships that may be linked to terrorist activities. This framework has been developed within the context of the DANTE Horizon 2020 project, as part of a larger international effort to detect and analyze terrorist-related content from online sources and help international police organizations in their investigations against crime and terrorism.
Lingua originaleEnglish
Titolo della pubblicazione ospiteLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Pagine120-131
Numero di pagine12
Volume11296
DOI
Stato di pubblicazionePubblicato - 2019
Evento25th International Conference on MultiMedia Modeling, MMM 2019 - Thessaloniki
Durata: 8 gen 201911 gen 2019

Serie di pubblicazioni

NomeLECTURE NOTES IN COMPUTER SCIENCE

Convegno

Convegno25th International Conference on MultiMedia Modeling, MMM 2019
CittàThessaloniki
Periodo8/1/1911/1/19

Keywords

  • Group discovery
  • Knowledge discovery
  • Named entity recognition
  • Natural language processing
  • Ontology building

Fingerprint

Entra nei temi di ricerca di 'A semantic knowledge discovery framework for detecting online terrorist networks'. Insieme formano una fingerprint unica.

Cita questo