A quasi-optimal error estimate for a discrete singularly perturbed approximation to the prescribed curvature problem

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

10 Citazioni (Scopus)

Abstract

Solutions of the so-called prescribed curvature problem $\min_{A\subseteq\Omega} P_\Omega (A) - \int_A g(x)$, g being the curvature field, are approximated via a singularly perturbed elliptic PDE of bistable type. For nondegenerate relative minimizers $A \subset\subset \Omega$ we prove an $O(\epsilon^2|\log\epsilon|^2)$ error estimate (where $\epsilon$ stands for the perturbation parameter), and show that this estimate is quasi-optimal. The proof is based on the construction of accurate barriers suggested by formal asymptotics. This analysis is next extended to a finite element discretization of the PDE to prove the same error estimate for discrete minima.
Lingua originaleEnglish
pagine (da-a)45-67
Numero di pagine23
RivistaMathematics of Computation
DOI
Stato di pubblicazionePubblicato - 1997

Keywords

  • elliptic partial differential equations
  • prescribed curvature
  • syngular perturbation

Fingerprint

Entra nei temi di ricerca di 'A quasi-optimal error estimate for a discrete singularly perturbed approximation to the prescribed curvature problem'. Insieme formano una fingerprint unica.

Cita questo