Abstract
In this work we consider differential equations of the type
$$u^{(k)} = f (u),$$
and study the extinction profile of their solutions. Emphasis is placed on the special case $-u^{(4)} = \sgn(u)$, which is related to the Kuramoto-Sivashinsky equation. In this case we describe in more detail the extinction phenomenon and prove a conjecture by Galaktionov and Svirshchevskii.
Lingua originale | English |
---|---|
pagine (da-a) | 1-29 |
Numero di pagine | 29 |
Rivista | Mathematics In Engineering |
Volume | 3 |
DOI | |
Stato di pubblicazione | Pubblicato - 2021 |
Keywords
- Discontinuous differential equations
- Extinction profile
- Finite time extinction
- Oscillations
- Periodic solutions