A note on smooth rotund norms which are not midpoint locally uniformly rotund

Carlo Alberto De Bernardi*, Alessandro Preti, Jacopo Somaglia

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in rivistaArticolo in rivista

Abstract

We prove that every separable infinite-dimensional Banach space admits a Gâteaux smooth and rotund norm which is not midpoint locally uniformly rotund. Moreover, by using a similar technique, we provide in every infinite-dimensional Banach space with separable dual a Fréchet smooth and weakly uniformly rotund norm which is not midpoint locally uniformly rotund. These two results provide a positive answer to some open problems by A. J. Guirao, V. Montesinos, and V. Zizler.
Lingua originaleEnglish
pagine (da-a)N/A-N/A
RivistaJournal of Mathematical Analysis and Applications
Volume550
DOI
Stato di pubblicazionePubblicato - 2025

Keywords

  • Renorming
  • Rotund norm
  • URED norm
  • Gâteaux norm
  • Fréchet norm
  • MLUR norm

Fingerprint

Entra nei temi di ricerca di 'A note on smooth rotund norms which are not midpoint locally uniformly rotund'. Insieme formano una fingerprint unica.

Cita questo