Abstract
A nonlinear Korn inequality based on the Green-Saint Venant strain tensor is proved, whenever the displacement is in the Sobolev space W^{1,p}, p≥2, under Dirichlet conditions on a part of the boundary. The inequality can be useful in proving the coercivity of a nonlinear elastic energy.
Lingua originale | English |
---|---|
pagine (da-a) | 129-134 |
Numero di pagine | 6 |
Rivista | Journal of Elasticity |
Volume | 126 |
DOI | |
Stato di pubblicazione | Pubblicato - 2016 |
Keywords
- Coercivity
- Finite elasticity
- Geometric rigidity lemma
- Nonlinear Korn inequality