A new result on the problem of Buratti, Horak and Rosa

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

6 Citazioni (Scopus)

Abstract

The conjecture of Peter Horak and Alex Rosa (generalizing that of Marco Buratti) states that a multiset L of v−1 positive integers not exceeding [v/2] is the list of edge-lengths of a suitable Hamiltonian path of the complete graph with vertex-set {0,1,...,v−1} if and only if the following condition (here reformulated in a slightly easier form) is satisfied: for every divisor d of v, the number of multiples of d appearing in L is at most v−d. In this paper we do some preliminary discussions on the conjecture, including its relationship with graph decompositions. Then we prove, as main result, that the conjecture is true whenever all the elements of L are in {1,2,3,5}.
Lingua originaleEnglish
pagine (da-a)1-14
Numero di pagine14
RivistaDiscrete Mathematics
Volume319
DOI
Stato di pubblicazionePubblicato - 2014

Keywords

  • Complete graph
  • Edge-length
  • Hamiltonian path

Fingerprint Entra nei temi di ricerca di 'A new result on the problem of Buratti, Horak and Rosa'. Insieme formano una fingerprint unica.

Cita questo