TY - JOUR
T1 - A mechanist model simulating primary infections of downy mildew in grapevine
AU - Rossi, Vittorio
AU - Caffi, Tito
AU - Giosue', Simona
PY - 2008
Y1 - 2008
N2 - A dynamic model for Plasmopara viticola primary infections on grapevine was elaborated according to a mechanistic approach. Development of the sexual stage of the pathogen was split into different state variables, in which changes from one state to another were regulated by rates depending on environmental conditions. The conceptual model was based on the definition of a primary inoculum season, a seasonal oospore (inoculum) dose, and its division into many coeval cohorts. Each cohort progresses along the primary infection cycle (production and survival of sporangia, release, survival and dispersal of zoospores, infection, appearance of disease symptoms) simultaneously, with a time step of one hour. The model was evaluated over a 12-year period (1995-2006) in Emilia-Romagna (Northern Italy) by comparing simulations with actual observations of the first seasonal symptoms of downy mildew in 43 vineyards. This data set was not used in model building and represents different environmental conditions, with both early and late primary infections. The model showed high sensitivity, specificity and accuracy. The achieved probabilities that an oospore cohort produce or not an infection were 0.994 and 0.999, respectively, while there was practically no probability that an oospore cohort produce infection when infection is not predicted by the model. Because of a small probability (< 0.01) that a predicted infection is not a true infection, confidence in prediction of non-infections was higher than in prediction of infections. Most of the wrong positive predictions occurred in early season, when the host was in the earlier growth stages, or when the oospore germination was triggered by isolated weak rain events. Considering that neither calibration nor empirical adjustment of model parameters were necessary to obtain accurate simulation, it was concluded that this model produces a reasonable approximation of the primary infection processes underlying oospore development. The model showed that 86% of the oospore cohorts failed infection, because sporangia did not survive till zoospore release (5.6% of these cohorts), zoospores released from sporangia did not survive until dispersal (83.6%), or the zoospores that dispersed to leaves did not cause infection (10.8%). (c) 2007 Elsevier B.V. All rights reserved.
AB - A dynamic model for Plasmopara viticola primary infections on grapevine was elaborated according to a mechanistic approach. Development of the sexual stage of the pathogen was split into different state variables, in which changes from one state to another were regulated by rates depending on environmental conditions. The conceptual model was based on the definition of a primary inoculum season, a seasonal oospore (inoculum) dose, and its division into many coeval cohorts. Each cohort progresses along the primary infection cycle (production and survival of sporangia, release, survival and dispersal of zoospores, infection, appearance of disease symptoms) simultaneously, with a time step of one hour. The model was evaluated over a 12-year period (1995-2006) in Emilia-Romagna (Northern Italy) by comparing simulations with actual observations of the first seasonal symptoms of downy mildew in 43 vineyards. This data set was not used in model building and represents different environmental conditions, with both early and late primary infections. The model showed high sensitivity, specificity and accuracy. The achieved probabilities that an oospore cohort produce or not an infection were 0.994 and 0.999, respectively, while there was practically no probability that an oospore cohort produce infection when infection is not predicted by the model. Because of a small probability (< 0.01) that a predicted infection is not a true infection, confidence in prediction of non-infections was higher than in prediction of infections. Most of the wrong positive predictions occurred in early season, when the host was in the earlier growth stages, or when the oospore germination was triggered by isolated weak rain events. Considering that neither calibration nor empirical adjustment of model parameters were necessary to obtain accurate simulation, it was concluded that this model produces a reasonable approximation of the primary infection processes underlying oospore development. The model showed that 86% of the oospore cohorts failed infection, because sporangia did not survive till zoospore release (5.6% of these cohorts), zoospores released from sporangia did not survive until dispersal (83.6%), or the zoospores that dispersed to leaves did not cause infection (10.8%). (c) 2007 Elsevier B.V. All rights reserved.
KW - downy mildew disease
KW - dynamic modelling
KW - grapevine
KW - oospores
KW - sexual stage
KW - simulation model
KW - downy mildew disease
KW - dynamic modelling
KW - grapevine
KW - oospores
KW - sexual stage
KW - simulation model
UR - http://hdl.handle.net/10807/37731
U2 - 10.1016/j.ecolmodel.2007.10.046
DO - 10.1016/j.ecolmodel.2007.10.046
M3 - Article
SN - 0304-3800
SP - 480
EP - 491
JO - Ecological Modelling
JF - Ecological Modelling
ER -