TY - JOUR
T1 - A generalization of Heffter arrays
AU - Costa, Simone
AU - Morini, Fiorenza
AU - Pasotti, Anita
AU - Pellegrini, Marco Antonio
PY - 2020
Y1 - 2020
N2 - In this paper, we define a new class of partially filled arrays, called relative Heffter arrays, that are a generalization of the Heffter arrays introduced by Archdeacon in 2015. Let v = 2nk + t be a positive integer, where t divides 2nk, and let J be the subgroup of Zv of order t. A Ht (m, n; s, k) Heffter array over Zv relative to J is an m × n partially filled array with elements in Zv such that (a) each row contains S filled cells and each column contains k filled cells; (b) for every x ∈ ZvJ, either x or -x appears in the array; and (c) the elements in every row and column sum to 0. Here we study the existence of square integer (i.e., with entries chosen in (Formula presented.) and where the sums are zero in Z) relative Heffter arrays for t = k, denoted by Hk (n; k).. In particular, we prove that for 3 ≤ k ≤ n, with k ≠ 5, there exists an integer Hk (n; k) if and only if one of the following holds: (a) k is odd and n ≡ 0, 3 (mod 4); (b) k ≡ 2 (mod 4) and n is even; (c) k ≡ 0 (mod 4). Also, we show how these arrays give rise to cyclic cycle decompositions of the complete multipartite graph.
AB - In this paper, we define a new class of partially filled arrays, called relative Heffter arrays, that are a generalization of the Heffter arrays introduced by Archdeacon in 2015. Let v = 2nk + t be a positive integer, where t divides 2nk, and let J be the subgroup of Zv of order t. A Ht (m, n; s, k) Heffter array over Zv relative to J is an m × n partially filled array with elements in Zv such that (a) each row contains S filled cells and each column contains k filled cells; (b) for every x ∈ ZvJ, either x or -x appears in the array; and (c) the elements in every row and column sum to 0. Here we study the existence of square integer (i.e., with entries chosen in (Formula presented.) and where the sums are zero in Z) relative Heffter arrays for t = k, denoted by Hk (n; k).. In particular, we prove that for 3 ≤ k ≤ n, with k ≠ 5, there exists an integer Hk (n; k) if and only if one of the following holds: (a) k is odd and n ≡ 0, 3 (mod 4); (b) k ≡ 2 (mod 4) and n is even; (c) k ≡ 0 (mod 4). Also, we show how these arrays give rise to cyclic cycle decompositions of the complete multipartite graph.
KW - Heffter array
KW - multipartite complete graph
KW - orthogonal cyclic cycle decomposition
KW - Heffter array
KW - multipartite complete graph
KW - orthogonal cyclic cycle decomposition
UR - http://hdl.handle.net/10807/150156
U2 - 10.1002/jcd.21684
DO - 10.1002/jcd.21684
M3 - Article
SN - 1063-8539
VL - 28
SP - 171
EP - 206
JO - Journal of Combinatorial Designs
JF - Journal of Combinatorial Designs
ER -