Abstract
Dystroglycan (DG) is a cell adhesion complex composed by two subunits, the highly glycosylated α-DG and the transmembrane β-DG. In skeletal muscle, DG is involved in dystroglycanopathies, a group of heterogeneous muscular dystrophies characterized by a reduced glycosylation of α-DG. The genes mutated in secondary dystroglycanopathies are involved in the synthesis of O-mannosyl glycans and in the O-mannosylation pathway of α-DG. Mutations in the DG gene (DAG1), causing primary dystroglycanopathies, destabilize the α-DG core protein influencing its binding to modifying enzymes. Recently, a homozygous mutation (p.Cys699Phe) hitting the β-DG ectodomain has been identified in a patient affected by Muscle-Eye-Brain disease with multicystic leucodystrophy, suggesting that other mechanisms than hypoglycosylation of α-DG could be implicated in dystroglycanopathies. Herein, we have characterized the DG murine mutant counterpart by transfection in cellular systems and high-resolution microscopy. We observed that the mutation alters the DG processing leading to retention of its uncleaved precursor in the endoplasmic reticulum. Accordingly, small-angle X-ray scattering (SAXS) data, corroborated by biochemical and biophysical experiments, revealed that the mutation provokes an alteration in the β-DG ectodomain overall folding, resulting in disulfide-associated oligomerization. Our data provide the first evidence of a novel intracellular mechanism, featuring an anomalous endoplasmic reticulum-retention, underlying dystroglycanopathy. This article is protected by copyright. All rights reserved.
Lingua originale | English |
---|---|
pagine (da-a) | 266-280 |
Numero di pagine | 15 |
Rivista | Human Mutation |
Volume | 2018/39 |
DOI | |
Stato di pubblicazione | Pubblicato - 2017 |
Keywords
- SAXS
- confocal microscopy
- dystroglycan
- dystroglycanopathy
- endoplasmic-reticulum retention
- multicystic leukodystrophy
- site-directed mutagenesis
- super resolution microscopy