A complete invariant for connected surfaces in the 3-sphere

Maurizio Paolini, Giovanni Bellettini, Yi-Sheng Wang

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

Abstract

We construct a complete invariant of oriented connected closed surfaces in 3, which generalizes the notion of peripheral system of a knot group. As an application, we define two computable invariants to investigate handlebody knots and bi-knotted surfaces with homeomorphic complements. In particular, we obtain an alternative proof of inequivalence of Ishii, Kishimoto, Moriuchi and Suzuki's handlebody knots 51 and 64.
Lingua originaleEnglish
pagine (da-a)1-24
Numero di pagine24
RivistaJournal of Knot Theory and its Ramifications
Volume29
DOI
Stato di pubblicazionePubblicato - 2020

Keywords

  • Complete invariant
  • Handlebody knots
  • Surfaces in the 3-sphere

Fingerprint Entra nei temi di ricerca di 'A complete invariant for connected surfaces in the 3-sphere'. Insieme formano una fingerprint unica.

Cita questo