A Bayesian nonparametric model for density and cluster estimation: the ε -NGG process mixture Un modello bayesiano nonparametrico per la stima di densità e l’analisi di cluster: il modello mistura attraverso il processo ε -NGG

Raffaele Argiento, Ilaria Bianchini, Alessandra Guglielmi

Risultato della ricerca: Contributo in libroContributo a convegno

Abstract

We define a new class of random probability measures, approximating the well-known normalized generalized gamma (NGG) process. Our new process is defined from the representation of NGG processes as discrete measures where the weights are obtained by normalization of the jumps of a Poisson process, and the support consists of iid points, however considering only jumps larger than a thresh- old ε . Therefore, the number of jumps of this new process, called ε -NGG process, is a.s. finite. A prior distribution for ε can be elicited. We will assume the ε -NGG process as the mixing measure in a mixture model for density and cluster estimation. Moreover, a efficient Gibbs sampler scheme to simulate from the posterior is provided. Finally, the performance of our algorithm on the Galaxy dataset will be illustrated.
Lingua originaleEnglish
Titolo della pubblicazione ospiteProceedings of 47th SIS Scientific Meeting of the Italian Statistica Society
Pagine1-10
Numero di pagine10
Stato di pubblicazionePubblicato - 2014
Evento47th SIS Scientific Meeting of the Italian Statistica Society - Cagliari
Durata: 11 giu 201413 giu 2014

Convegno

Convegno47th SIS Scientific Meeting of the Italian Statistica Society
CittàCagliari
Periodo11/6/1413/6/14

Keywords

  • Bayesian nonparametric mixture models, normalized generalized gamma process, Dirichlet process mixture model, Gibbs sampler, finite dimensional approximation

Fingerprint

Entra nei temi di ricerca di 'A Bayesian nonparametric model for density and cluster estimation: the ε -NGG process mixture Un modello bayesiano nonparametrico per la stima di densità e l’analisi di cluster: il modello mistura attraverso il processo ε -NGG'. Insieme formano una fingerprint unica.

Cita questo