TY - JOUR
T1 - 2-Coverings for exceptional and sporadic simple groups
AU - Pellegrini, Marco Antonio
PY - 2013
Y1 - 2013
N2 - In this paper we prove that if G is a finite exceptional simple group of Lie type, then G admits a 2-covering if, and only if, it is one of the following groups: G_2(2^a), F_4(3^a), G_2(2)', 3G_2(3)', 2F_4(2)'. Furthermore, if G is a finite sporadic simple group, then G admits a 2-covering if, and only if, G = M_11.
AB - In this paper we prove that if G is a finite exceptional simple group of Lie type, then G admits a 2-covering if, and only if, it is one of the following groups: G_2(2^a), F_4(3^a), G_2(2)', 3G_2(3)', 2F_4(2)'. Furthermore, if G is a finite sporadic simple group, then G admits a 2-covering if, and only if, G = M_11.
KW - Coverings
KW - Finite simple groups
KW - Maximal subgroups
KW - Coverings
KW - Finite simple groups
KW - Maximal subgroups
UR - http://hdl.handle.net/10807/55564
U2 - 10.1007/s00013-013-0562-8
DO - 10.1007/s00013-013-0562-8
M3 - Article
SN - 0003-889X
VL - 101
SP - 201
EP - 206
JO - Archiv der Mathematik
JF - Archiv der Mathematik
ER -