Virtual reality: emerging role of simulation training in vascular access

Mauro Pittiruti, Ija Davidson, C Lok, B Dolmatch, M Gallieni, B Nolen, J Ross, D. Slakey

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Evolving new technologies in vascular access mandate increased attention to patient safety; an often overlooked yet valuable training tool is simulation. For the end-stage renal disease patient, simulation tools are effective for all aspects of creating access for peritoneal dialysis and hemodialysis. Based on aviation principles, known as crew resource management, we place equal emphasis on team training as individual training to improve interactions between team members and systems, cumulating in improved safety. Simulation allows for environmental control and standardized procedures, letting the trainee practice and correct mistakes without harm to patients, compared with traditional patient-based training. Vascular access simulators range from suture devices, to pressurized tunneled conduits for needle cannulation, to computer-based interventional simulators. Simulation training includes simulated case learning, root cause analysis of adverse outcomes, and continual update and refinement of concepts. Implementation of effective human to complex systems interaction in end-stage renal disease patients involves a change in institutional culture. Three concepts discussed in this article are as follows: (1) the need for user-friendly systems and technology to enhance performance, (2) the necessity for members to both train and work together as a team, and (3) the team assigned to use the system must test and practice it to a proficient level before safely using the system on patients.
Original languageEnglish
Pages (from-to)572-581
Number of pages10
JournalSeminars in Nephrology
Volume32
DOIs
Publication statusPublished - 2012

Keywords

  • Humans
  • Kidney Failure, Chronic
  • Patient Simulation
  • Renal Dialysis
  • Vascular Access Devices
  • Vascular Surgical Procedures

Fingerprint

Dive into the research topics of 'Virtual reality: emerging role of simulation training in vascular access'. Together they form a unique fingerprint.

Cite this