Ultrafast laser pulses to detect and generate fast thermo-mechanical transients in matter

Claudio Giannetti, Francesco Banfi, Damiano Nardi, Gabriele Ferrini, Fulvio Parmigiani

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

The use of femtosecond laser pulses to impulsively excite thermal and mechanical transients in matter has led, in the last years, to the development of picosecond acoustics. Recently, the pump-probe approach has been applied to nanoengineered materials to optically generate and detect acoustic waves in the gigahertz terahertz frequency range. In this paper, we review the latest advances on ultrafast generation and detection of thermal gradients and pseudo-surface acoustic waves in 2-D lattices of metallic nanostructures. Comparing the experimental findings to the numeric analysis of the full thermomechanical problem, these materials emerge as model systems to investigate both the mechanical and thermal energy transfer at the nanoscale. The sensitivity of the technique to the nanostructure mass and shape variations, coupled with the phononic crystal properties of the lattices, opens the way to a variety of applications ranging from hypersonic waveguiding to mass sensors with femtosecond time resolution.
Original languageEnglish
Pages (from-to)21-32
Number of pages12
JournalIEEE Photonics Journal
Volume1
DOIs
Publication statusPublished - 2009

Keywords

  • phononic crystals
  • thermo-mechanics
  • ultrafast

Fingerprint

Dive into the research topics of 'Ultrafast laser pulses to detect and generate fast thermo-mechanical transients in matter'. Together they form a unique fingerprint.

Cite this