Abstract
A new paradigm for active nanophotonic structures and metadevices based on perovskites has recently emerged due to several unique features of these materials such as room-temperature exciton, tunable bandgap energy, and low-cost fabrication methods [1,2]. Progress towards future applications requiring dynamical control of the optical response will depend on our understanding of photoexcitations in these systems [3,4]. In this work, we report the first experimental observation of ultrafast all-optical modulation of Fano resonant halide perovskite nanoparticles (NP). Our measurements, corroborated by analytical and numerical models, show that the out-of-equilibrium dynamics of these systems can be thoroughly controlled by engineering the NP size.
Original language | English |
---|---|
Title of host publication | 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019 |
Pages | 1 |
Number of pages | 1 |
DOIs | |
Publication status | Published - 2019 |
Event | 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019 - Munich, Germany Duration: 23 Jun 2019 → 27 Jun 2019 |
Conference
Conference | 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019 |
---|---|
City | Munich, Germany |
Period | 23/6/19 → 27/6/19 |
Keywords
- Optical interferometry , Nanoparticles , Ultrafast optics , Excitons , Optical pumping , Optical pulses , Photonic band gap