TY - JOUR
T1 - Structural flexibility of human alpha-dystroglycan
AU - Bozzi, Manuela
AU - Bigotti, Maria Giulia
AU - Sciandra, Francesca
AU - Brancaccio, Andrea
PY - 2017
Y1 - 2017
N2 - Dystroglycan (DG), composed of α and β subunits, belongs to the dystrophin-associated glycoprotein complex. α-DG is an extracellular matrix protein that undergoes a complex post-translational glycosylation process. The bifunctional glycosyltransferase like-acetylglucosaminyltransferase (LARGE) plays a crucial role in the maturation of α-DG, enabling its binding to laminin. We have already structurally analyzed the N-terminal region of murine α-DG (α-DG-Nt) and of a pathological single point mutant that may affect recognition of LARGE, although the structural features of the potential interaction between LARGE and DG remain elusive. We now report on the crystal structure of the wild-type human α-DG-Nt that has allowed us to assess the reliability of our murine crystallographic structure as a α-DG-Nt general model. Moreover, we address for the first time both structures in solution. Interestingly, small-angle X-ray scattering (SAXS) reveals the existence of two main protein conformations ensembles. The predominant species is reminiscent of the crystal structure, while the less populated one assumes a more extended fold. A comparative analysis of the human and murine α-DG-Nt solution structures reveals that the two proteins share a common interdomain flexibility and population distribution of the two conformers. This is confirmed by the very similar stability displayed by the two orthologs as assessed by biochemical and biophysical experiments. These results highlight the need to take into account the molecular plasticity of α-DG-Nt in solution, as it can play an important role in the functional interactions with other binding partners.
AB - Dystroglycan (DG), composed of α and β subunits, belongs to the dystrophin-associated glycoprotein complex. α-DG is an extracellular matrix protein that undergoes a complex post-translational glycosylation process. The bifunctional glycosyltransferase like-acetylglucosaminyltransferase (LARGE) plays a crucial role in the maturation of α-DG, enabling its binding to laminin. We have already structurally analyzed the N-terminal region of murine α-DG (α-DG-Nt) and of a pathological single point mutant that may affect recognition of LARGE, although the structural features of the potential interaction between LARGE and DG remain elusive. We now report on the crystal structure of the wild-type human α-DG-Nt that has allowed us to assess the reliability of our murine crystallographic structure as a α-DG-Nt general model. Moreover, we address for the first time both structures in solution. Interestingly, small-angle X-ray scattering (SAXS) reveals the existence of two main protein conformations ensembles. The predominant species is reminiscent of the crystal structure, while the less populated one assumes a more extended fold. A comparative analysis of the human and murine α-DG-Nt solution structures reveals that the two proteins share a common interdomain flexibility and population distribution of the two conformers. This is confirmed by the very similar stability displayed by the two orthologs as assessed by biochemical and biophysical experiments. These results highlight the need to take into account the molecular plasticity of α-DG-Nt in solution, as it can play an important role in the functional interactions with other binding partners.
KW - Biochemistry, Genetics and Molecular Biology (all)
KW - X-ray crystal structure
KW - conformational stability
KW - muscular dystrophy
KW - small-angle X-ray scattering
KW - structural flexibility
KW - α-Dystroglycan
KW - Biochemistry, Genetics and Molecular Biology (all)
KW - X-ray crystal structure
KW - conformational stability
KW - muscular dystrophy
KW - small-angle X-ray scattering
KW - structural flexibility
KW - α-Dystroglycan
UR - http://hdl.handle.net/10807/108395
UR - http://www.elsevier.com/wps/find/journaldescription.cws_home/726807/description#description
U2 - 10.1002/2211-5463.12259
DO - 10.1002/2211-5463.12259
M3 - Article
SN - 2211-5463
VL - 7
SP - 1064
EP - 1077
JO - FEBS OPENBIO
JF - FEBS OPENBIO
ER -