Shaping Silver Nanoparticles’ Size through the Carrier Composition: Synthesis and Antimicrobial Activity

Margherita Cacaci, Giacomo Biagiotti, Gianluca Toniolo, Martin Albino, Claudio Sangregorio, Mirko Severi, Maura Di Vito, Damiano Squitieri, Luca Contiero, Marco Paggi, Marcello Marelli, Stefano Cicchi, Francesca Bugli, Barbara Richichi

Research output: Contribution to journalArticle

Abstract

The increasing resistance of bacteria to conventional antibiotics represents a severe global emergency for human health. The broad-spectrum antibacterial activity of silver has been known for a long time, and silver at the nanoscale shows enhanced antibacterial activity. This has prompted research into the development of silver-based nanomaterials for applications in clinical settings. In this work, the synthesis of three different silver nanoparticles (AgNPs) hybrids using both organic and inorganic supports with intrinsic antibacterial properties is described. The tuning of the AgNPs' shape and size according to the type of bioactive support was also investigated. Specifically, the commercially available sulfated cellulose nanocrystal (CNC), the salicylic acid functionalized reduced graphene oxide (rGO-SA), and the commercially available titanium dioxide (TiO2) were chosen as organic (CNC, rGO-SA) and inorganic (TiO2) supports. Then, the antimicrobial activity of the AgNP composites was assessed on clinically relevant multi-drug-resistant bacteria and the fungus Candida albicans. The results show how the formation of Ag nanoparticles on the selected supports provides the resulting composite materials with an effective antibacterial activity.
Original languageEnglish
Pages (from-to)N/A-N/A
JournalNanomaterials
Volume13
DOIs
Publication statusPublished - 2023

Keywords

  • antimicrobial resistance
  • graphene oxide
  • salicylic acid
  • silver nanoparticles
  • titanium dioxide

Fingerprint

Dive into the research topics of 'Shaping Silver Nanoparticles’ Size through the Carrier Composition: Synthesis and Antimicrobial Activity'. Together they form a unique fingerprint.

Cite this