Abstract
The glioblastoma (GBM) immune microenvironment is highly heterogeneous, and microglia may represent 30–70% of the entire tumor. However, the role of microglia and other specific immune populations is poorly characterized. Activation of mTOR signaling occurs in numerous human cancers and has roles in microglia-glioma cell interactions. We now show in human tumor specimens (42 patients), that 39% of tumor-associated microglial (TAM) cells express mTOR phosphorylated at Ser-2448; and similar mTOR activation is observed using a human microglia-glioma interaction paradigm. In addition, we confirm previous studies that microglia express urea and ARG1 (taken as M2 marker) in the presence of glioma cells, and this phenotype is down-regulated in the presence of a mTOR inhibitor. These results suggest that mTOR suppression in GBM patients might induce a reduction of the M2 phenotype expression in up to 40% of all TAMs. Since the M2 profile of microglial activation is believed to be associated with tumor progression, reductions in that phenotype may represent an additional anti-tumor mechanism of action of mTOR inhibitors, along with direct anti-proliferative activities.
Original language | English |
---|---|
Pages (from-to) | 104485-147797 |
Number of pages | 43313 |
Journal | Neurochemistry International |
Volume | 129 |
DOIs | |
Publication status | Published - 2019 |
Keywords
- Glioblastoma
- Microglia
- Molecularly targeted therapies
- TSC2
- Tumor microenvironment
- mTOR