Performance assessment of nitrate leaching models for highly vulnerable soils used in low-input farming based on lysimeter data

Marco Trevisan, Piet Groenendijk, Marius Heinen, Gernot Klammler, Johann Fank, Hans Kupfersberger, Vassilios Pisinaras, Alexandra Gemitzi, Salvador Peña-Haro, Alberto García-Prats, Manuel Pulido-Velazquez, Alessia Perego, Marco Acutis

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

The agricultural sector faces the challenge of ensuring food security without an excessive burden on the environment. Simulation models provide excellent instruments for researchers to gain more insight into relevant processes and best agricultural practices and provide tools for planners for decision making support. The extent to which models are capable of reliable extrapolation and prediction is important for exploring new farming systems or assessing the impacts of future land and climate changes.A performance assessment was conducted by testing six detailed state-of-the-art models for simulation of nitrate leaching (ARMOSA, COUPMODEL, DAISY, EPIC, SIMWASER/STOTRASIM, SWAP/ANIMO) for lysimeter data of the Wagna experimental field station in Eastern Austria, where the soil is highly vulnerable to nitrate leaching.Three consecutive phases were distinguished to gain insight in the predictive power of the models: 1) a blind test for 2005-2008 in which only soil hydraulic characteristics, meteorological data and information about the agricultural management were accessible; 2) a calibration for the same period in which essential information on field observations was additionally available to the modellers; and 3) a validation for 2009-2011 with the corresponding type of data available as for the blind test. A set of statistical metrics (mean absolute error, root mean squared error, index of agreement, model efficiency, root relative squared error, Pearson's linear correlation coefficient) was applied for testing the results and comparing the models.None of the models performed good for all of the statistical metrics. Models designed for nitrate leaching in high-input farming systems had difficulties in accurately predicting leaching in low-input farming systems that are strongly influenced by the retention of nitrogen in catch crops and nitrogen fixation by legumes. An accurate calibration does not guarantee a good predictive power of the model. Nevertheless all models were able to identify years and crops with high- and low-leaching rates. © 2014 Elsevier B.V.
Original languageEnglish
Pages (from-to)463-480
Number of pages18
JournalScience of the Total Environment
DOIs
Publication statusPublished - 2014

Keywords

  • Lysimeter
  • Model comparison
  • Nitrate leaching
  • Performance assessment
  • Predictive power
  • Simulation model

Fingerprint

Dive into the research topics of 'Performance assessment of nitrate leaching models for highly vulnerable soils used in low-input farming based on lysimeter data'. Together they form a unique fingerprint.

Cite this