Palmitate-induced lipotoxicity alters acetylation of multiple proteins in clonal beta cells and human pancreatic islets

Research output: Contribution to journalArticle


Type 2 diabetes is characterized by progressive beta cell dysfunction, with lipotoxicity playing a possible pathogenetic role. Palmitate is often used to examine the direct effects of lipotoxicity and it may cause mitochondrial alterations by activating protein acetylation. However, it is unknown whether palmitate influences protein acetylation in beta cells. We investigated lysine acetylation in mitochondrial proteins from INS-1E beta cells (INS-1E) and in proteins from human pancreatic islets (HPI) after 24 h palmitate exposure. First, we confirmed that palmitate damages beta cells and demonstrated that chemical inhibition of deacetylation also impairs INS-1E function and survival. Then, by 2-D gel electrophoresis, Western Blot and Liquid Chromatography-Mass Spectrometry we evaluated the effects of palmitate on protein acetylation. In mitochondrial preparations from palmitate-treated INS-1E, 32 acetylated spots were detected, with 13 proteins resulting over-acetylated. In HPI, 136 acetylated proteins were found, of which 11 were over-acetylated upon culture with palmitate. Interestingly, three proteins, glutamate dehydrogenase, mitochondrial superoxide dismutase, and SREBP-1, were over-acetylated in both INS-1E and HPI. Therefore, prolonged exposure to palmitate induces changes in beta cell protein lysine acetylation and this modification could play a role in causing beta cell damage. Dysregulated acetylation may be a target to counteract palmitate-induced beta cell lipotoxicity.
Original languageEnglish
Pages (from-to)13445-13445
Number of pages1
JournalScientific Reports
Publication statusPublished - 2017


  • N/A


Dive into the research topics of 'Palmitate-induced lipotoxicity alters acetylation of multiple proteins in clonal beta cells and human pancreatic islets'. Together they form a unique fingerprint.

Cite this