On some hydrodynamical aspects of quantum mechanics

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

In this note we first set up an analogy between spin and vorticity of a perfect 2d-fluid flow, based on the complex polynomial (i.e. Borel-Weil) realization of the irreducible unitary representations of SU(2), and looking at the Madelung-Bohm velocity attached to the ensuing spin wave functions. We also show that, in the framework of finite dimensional geometric quantum mechanics, the Schrödinger velocity field on projective Hilbert space is divergence-free (being Killing with respect to the Fubini-Study metric) and fulfils the stationary Euler equation, with pressure proportional to the Hamiltonian uncertainty (squared). We explicitly determine the critical points of the pressure of this “Schrödinger fluid”, together with its vorticity, which turns out to depend on the spacings of the energy levels. These results follow from hydrodynamical properties of Killing vector fields valid in any (finite dimensional) Riemannian manifold, of possible independent interest.
Original languageEnglish
Pages (from-to)42-48
Number of pages7
JournalCENTRAL EUROPEAN JOURNAL OF PHYSICS
Volume8
DOIs
Publication statusPublished - 2010

Keywords

  • quantum mechanics, geometry, hydrodynamics

Fingerprint

Dive into the research topics of 'On some hydrodynamical aspects of quantum mechanics'. Together they form a unique fingerprint.

Cite this