TY - JOUR
T1 - On fractional Schrödinger equations with Hartree type nonlinearities
AU - Cingolani, Silvia
AU - Gallo, Marco
AU - Tanaka, Kazunaga
PY - 2022
Y1 - 2022
N2 - Goal of this paper is to study the following doubly nonlocal equation
\begin{equation}\label{eq_abstract}
(- \Delta)^s u + \mu u = (I_\alpha*F(u))F'(u) \quad \hbox{in $\mathbb{R}^N$} \tag{P}
\end{equation}
in the case of general nonlinearities $F \in C^1(\R)$ of Berestycki-Lions type, when $N \geq 2$ and $\mu>0$ is fixed. Here $(-\Delta)^s$, $s \in (0,1)$, denotes the fractional Laplacian, while the Hartree-type term is given by convolution with the Riesz potential $I_{\alpha}$, $\alpha \in (0,N)$.
We prove existence of ground states of \eqref{eq_abstract}. Furthermore we obtain regularity and asymptotic decay of general solutions, extending some results contained in \cite{DSS1, MS2}.
AB - Goal of this paper is to study the following doubly nonlocal equation
\begin{equation}\label{eq_abstract}
(- \Delta)^s u + \mu u = (I_\alpha*F(u))F'(u) \quad \hbox{in $\mathbb{R}^N$} \tag{P}
\end{equation}
in the case of general nonlinearities $F \in C^1(\R)$ of Berestycki-Lions type, when $N \geq 2$ and $\mu>0$ is fixed. Here $(-\Delta)^s$, $s \in (0,1)$, denotes the fractional Laplacian, while the Hartree-type term is given by convolution with the Riesz potential $I_{\alpha}$, $\alpha \in (0,N)$.
We prove existence of ground states of \eqref{eq_abstract}. Furthermore we obtain regularity and asymptotic decay of general solutions, extending some results contained in \cite{DSS1, MS2}.
KW - Asymptotic decay
KW - Choquard nonlinearity
KW - Double nonlocality
KW - Fractional Laplacian
KW - Hartree term
KW - Nonlinear Schrödinger equation
KW - Regularity
KW - Symmetric solutions
KW - Asymptotic decay
KW - Choquard nonlinearity
KW - Double nonlocality
KW - Fractional Laplacian
KW - Hartree term
KW - Nonlinear Schrödinger equation
KW - Regularity
KW - Symmetric solutions
UR - http://hdl.handle.net/10807/229090
UR - https://www.aimspress.com/article/doi/10.3934/mine.2022056
U2 - 10.3934/mine.2022056
DO - 10.3934/mine.2022056
M3 - Article
SN - 2640-3501
VL - 4
SP - 1
EP - 33
JO - Mathematics In Engineering
JF - Mathematics In Engineering
ER -