Metal-catalyzed oxidation of human serum albumin: conformational and functional changes. Implications in protein aging

Alvaro Mordente, Elisabetta Meucci Calabrese, Ge Martorana

Research output: Contribution to journalArticle

124 Citations (Scopus)


Mild oxidative stress, as elicited by ascorbate, oxygen, and trace metals, affects the binding properties of human serum albumin via purely conformational changes. In fact, no gross alteration can be observed in the electrophoretic and chromatographic patterns of albumin, whereas localized modifications are indicated by the changes in absorption and fluorescence spectra and in polarization degree. The oxidized protein presents a small increase of bityrosine production and a time-dependent increase in the content of carbonyl groups, whereas proteolytic susceptibility is unchanged. A higher affinity for cis-parinaric acid and a slight loss of solubility in high salt indicate a greater surface hydrophobicity. Pinpoint denaturation of the albumin molecule is also suggested by a decreased "esterase" activity in the presence of p-nitrophenyl acetate. Conformational stability evaluated through thermal shock and addition of moderate amounts of guanidine indicate that the oxidized protein is more heat-resistant, less flexible, and more rigid than the native one. Although limited, structural damages afforded by the oxidative stress cause alterations of albumin binding properties as documented by experiments with probes and physiological ligands. The loss of biological activity of human serum albumin induced by ascorbate system appears of medical relevance, because it can affect drug metabolism and particularly drug tolerance in the elderly.
Original languageEnglish
Pages (from-to)4692-4699
Number of pages8
Publication statusPublished - 1991


  • Ascorbic Acid
  • Bilirubin
  • Binding Sites
  • Chromatography, High Pressure Liquid
  • Electrophoresis, Polyacrylamide Gel
  • Guanidine
  • Guanidines
  • Hot Temperature
  • Humans
  • Oxidation-Reduction
  • Potassium Iodide
  • Protein Conformation
  • Serum Albumin
  • Spectrometry, Fluorescence
  • Spectrophotometry, Ultraviolet


Dive into the research topics of 'Metal-catalyzed oxidation of human serum albumin: conformational and functional changes. Implications in protein aging'. Together they form a unique fingerprint.

Cite this