TY - JOUR
T1 - Machine learning approaches to enhance diagnosis and staging of patients with MASLD using routinely available clinical information
AU - Mcteer, Matthew
AU - Applegate, Douglas
AU - Mesenbrink, Peter
AU - Ratziu, Vlad
AU - Schattenberg, Jörn M.
AU - Bugianesi, Elisabetta
AU - Geier, Andreas
AU - Gomez, Manuel Romero
AU - Dufour, Jean-Francois
AU - Ekstedt, Mattias
AU - Francque, Sven
AU - Yki-Jarvinen, Hannele
AU - Allison, Michael
AU - Valenti, Luca
AU - Miele, Luca
AU - Pavlides, Michael
AU - Cobbold, Jeremy
AU - Papatheodoridis, Georgios
AU - Holleboom, Adriaan G.
AU - Tiniakos, Dina
AU - Brass, Clifford
AU - Anstee, Quentin M.
AU - Missier, Paolo
PY - 2024
Y1 - 2024
N2 - Aims Metabolic dysfunction Associated Steatotic Liver Disease (MASLD) outcomes such as MASH (metabolic dysfunction associated steatohepatitis), fibrosis and cirrhosis are ordinarily determined by resource-intensive and invasive biopsies. We aim to show that routine clinical tests offer sufficient information to predict these endpoints.Methods Using the LITMUS Metacohort derived from the European NAFLD Registry, the largest MASLD dataset in Europe, we create three combinations of features which vary in degree of procurement including a 19-variable feature set that are attained through a routine clinical appointment or blood test. This data was used to train predictive models using supervised machine learning (ML) algorithm XGBoost, alongside missing imputation technique MICE and class balancing algorithm SMOTE. Shapley Additive exPlanations (SHAP) were added to determine relative importance for each clinical variable.Results Analysing nine biopsy-derived MASLD outcomes of cohort size ranging between 5385 and 6673 subjects, we were able to predict individuals at training set AUCs ranging from 0.719-0.994, including classifying individuals who are At-Risk MASH at an AUC = 0.899. Using two further feature combinations of 26-variables and 35-variables, which included composite scores known to be good indicators for MASLD endpoints and advanced specialist tests, we found predictive performance did not sufficiently improve. We are also able to present local and global explanations for each ML model, offering clinicians interpretability without the expense of worsening predictive performance.Conclusions This study developed a series of ML models of accuracy ranging from 71.9-99.4% using only easily extractable and readily available information in predicting MASLD outcomes which are usually determined through highly invasive means.
AB - Aims Metabolic dysfunction Associated Steatotic Liver Disease (MASLD) outcomes such as MASH (metabolic dysfunction associated steatohepatitis), fibrosis and cirrhosis are ordinarily determined by resource-intensive and invasive biopsies. We aim to show that routine clinical tests offer sufficient information to predict these endpoints.Methods Using the LITMUS Metacohort derived from the European NAFLD Registry, the largest MASLD dataset in Europe, we create three combinations of features which vary in degree of procurement including a 19-variable feature set that are attained through a routine clinical appointment or blood test. This data was used to train predictive models using supervised machine learning (ML) algorithm XGBoost, alongside missing imputation technique MICE and class balancing algorithm SMOTE. Shapley Additive exPlanations (SHAP) were added to determine relative importance for each clinical variable.Results Analysing nine biopsy-derived MASLD outcomes of cohort size ranging between 5385 and 6673 subjects, we were able to predict individuals at training set AUCs ranging from 0.719-0.994, including classifying individuals who are At-Risk MASH at an AUC = 0.899. Using two further feature combinations of 26-variables and 35-variables, which included composite scores known to be good indicators for MASLD endpoints and advanced specialist tests, we found predictive performance did not sufficiently improve. We are also able to present local and global explanations for each ML model, offering clinicians interpretability without the expense of worsening predictive performance.Conclusions This study developed a series of ML models of accuracy ranging from 71.9-99.4% using only easily extractable and readily available information in predicting MASLD outcomes which are usually determined through highly invasive means.
KW - Machine Learning
KW - Machine Learning
UR - http://hdl.handle.net/10807/273391
U2 - 10.1371/journal.pone.0299487
DO - 10.1371/journal.pone.0299487
M3 - Article
SN - 1932-6203
VL - 19
SP - N/A-N/A
JO - PLoS One
JF - PLoS One
ER -