Effects of the pathological Q212P mutation on human prion protein non-octarepeat copper binding site

Paola D'Angelo, Stefano Della Longa, Alessandro Arcovito, Giordano Mancini, Andrea Zitolo, Giovanni Chillemi, Gabriele Giachin, Giuseppe Legname, Federico Benetti

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)


Prion diseases are a class of fatal neurodegenerative disorders characterized by brain spongiosis, synaptic degeneration, microglia and astrocytes activation, neuronal loss and altered redox control. These maladies can be sporadic, iatrogenic and genetic. The etiological agent is the prion, a misfolded form of the cellular prion protein, PrPC. PrPC interacts with metal ions, in particular copper and zinc, through the octarepeat and non-octarepeat binding sites. The physiological implication of this interaction is still unclear, as is the role of metals in the conversion. Since prion diseases present metal dys-homeostasis and increased oxidative stress, we described the copper-binding site located in the human C-terminal domain of PrP - HuPrP(90-231) - both in the wild-type protein and in the protein carrying the pathological mutation Q212P. We used the synchrotron-based X-ray absorption fine structure technique to study the Cu(II) and Cu(I) coordination geometries in the mutant, and we compared them with those obtained using the wild-type protein. By analyzing the extended X-ray absorption fine structure and the X-ray absorption near-edge structure, we highlighted changes in copper coordination induced by the point mutation Q212P in both oxidation states. While in the wild-type protein the copper-binding site has the same structure for both Cu(II) and Cu(I), in the mutant the coordination site changes drastically from the oxidized to the reduced form of the copper ion. Copper-binding sites in the mutant resemble those obtained using peptides, confirming the loss of short- and long-range interactions. These changes probably cause alterations in copper homeostasis and, consequently, in redox control.
Original languageEnglish
Pages (from-to)N/A-N/A
Publication statusPublished - 2012


  • prion disease


Dive into the research topics of 'Effects of the pathological Q212P mutation on human prion protein non-octarepeat copper binding site'. Together they form a unique fingerprint.

Cite this