Distinct neurological disorders with ATP1A3 mutations.

Erin L Heinzen, Fiorella Gurrieri, Alexis Arzimanoglou, Allison Brashear, Steven J Clapcote, David B Goldstein, Sigurdur H Jóhannesson, Mohamad A Mikati, Brian Neville, Sophie Nicole, Laurie J Ozelius, Hanne Poulsen, Tsveta Schyns, Kathleen J Sweadner, Arn Van Den Maagdenberg, Bente Vilsen

Research output: Contribution to journalArticle

148 Citations (Scopus)


Genetic research has shown that mutations that modify the protein-coding sequence of ATP1A3, the gene encoding the α3 subunit of Na+/K+-ATPase, cause both rapid-onset dystonia parkinsonism and alternating hemiplegia of childhood. These discoveries link two clinically distinct neurological diseases to the same gene, however, ATP1A3 mutations are, with one exception, disease-specific. Although the exact mechanism of how these mutations lead to disease is still unknown, much knowledge has been gained about functional consequences of ATP1A3 mutations using a range of in-vitro and animal model systems, and the role of Na+/K+-ATPases in the brain. Researchers and clinicians are attempting to further characterise neurological manifestations associated with mutations in ATP1A3, and to build on the existing molecular knowledge to understand how specific mutations can lead to different diseases.
Original languageEnglish
Pages (from-to)503-514
Number of pages12
Publication statusPublished - 2014


  • ATP1A3, Alternating Hemiplegia Childhood


Dive into the research topics of 'Distinct neurological disorders with ATP1A3 mutations.'. Together they form a unique fingerprint.

Cite this