TY - JOUR
T1 - BDNF rs6265 polymorphism methylation in Multiple Sclerosis: A possible marker of disease progression
AU - Nociti, Viviana
AU - Santoro, Massimo
AU - Quaranta, Davide
AU - Losavio, Francesco Antonio
AU - De Fino, Chiara
AU - Giordano, Rocco
AU - Palomba, Nicole
AU - Rossini, Paolo Maria
AU - Guerini, Franca Rosa
AU - Clerici, Mario
AU - Caputo, Domenico
AU - Mirabella, Massimiliano
PY - 2018
Y1 - 2018
N2 - Introduction Brain-Derived Neurotrophic Factor (BDNF) and its most common polymorphism Val66Met are known to have a role in Multiple Sclerosis (MS) pathogenesis. Evidence is accumulating that there is an involvement of DNA methylation in the regulation of BDNF expression. The aim of this study was to assess in blood samples of MS patients the correlation between the methylation status of the CpG site near BDNF-Val66Met polymorphism and the severity of the disease. Methods We recruited 209 MS patients that were genotyped for the BDNF Val66Met polymorphism. For each patient we quantitatively measured the methylation level of cytosine included in the exonic CpG site that can be created or abolished by the Val66Met BDNF polymorphism. Furthermore, we analyzed the clinical history of each patient and determined the time elapsed since the onset of the disease and an EDSS score of 6.0. Results The genetic analysis identified 122 (58.4%) subjects carrying the Val/Val genotype, 81 (38.8%) with Val/Met genotype, and 6 (2.8%) carrying the Met/Met genotype. When the endpoint of an EDSS score of 6 was taken into account by means of a survival analysis, 52 failures (i.e., reaching an EDSS score of 6) were reported. When the sample was stratified according to the percentage of the BDNF methylation, subjects falling below the median (median methylation = 81%) were at higher risk of failure (IRD = 0.016; 95%CI = 0.0050- 0.0279; p = 0.004). Conclusions In patients with a high disease progression the hypomethylation of the BDNF gene could increase the secretion of the protective neurotrophin, so epigenetic modifications could be the organism response to limit a brain functional reserve loss. Our study suggests that the percentage of methylation of the BDNF gene could be used as a prognostic factor for disease progression toward a high disability in MS patient.
AB - Introduction Brain-Derived Neurotrophic Factor (BDNF) and its most common polymorphism Val66Met are known to have a role in Multiple Sclerosis (MS) pathogenesis. Evidence is accumulating that there is an involvement of DNA methylation in the regulation of BDNF expression. The aim of this study was to assess in blood samples of MS patients the correlation between the methylation status of the CpG site near BDNF-Val66Met polymorphism and the severity of the disease. Methods We recruited 209 MS patients that were genotyped for the BDNF Val66Met polymorphism. For each patient we quantitatively measured the methylation level of cytosine included in the exonic CpG site that can be created or abolished by the Val66Met BDNF polymorphism. Furthermore, we analyzed the clinical history of each patient and determined the time elapsed since the onset of the disease and an EDSS score of 6.0. Results The genetic analysis identified 122 (58.4%) subjects carrying the Val/Val genotype, 81 (38.8%) with Val/Met genotype, and 6 (2.8%) carrying the Met/Met genotype. When the endpoint of an EDSS score of 6 was taken into account by means of a survival analysis, 52 failures (i.e., reaching an EDSS score of 6) were reported. When the sample was stratified according to the percentage of the BDNF methylation, subjects falling below the median (median methylation = 81%) were at higher risk of failure (IRD = 0.016; 95%CI = 0.0050- 0.0279; p = 0.004). Conclusions In patients with a high disease progression the hypomethylation of the BDNF gene could increase the secretion of the protective neurotrophin, so epigenetic modifications could be the organism response to limit a brain functional reserve loss. Our study suggests that the percentage of methylation of the BDNF gene could be used as a prognostic factor for disease progression toward a high disability in MS patient.
KW - Agricultural and Biological Sciences (all)
KW - Biochemistry, Genetics and Molecular Biology (all)
KW - Agricultural and Biological Sciences (all)
KW - Biochemistry, Genetics and Molecular Biology (all)
UR - http://hdl.handle.net/10807/131106
UR - https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0206140&type=printable
U2 - 10.1371/journal.pone.0206140
DO - 10.1371/journal.pone.0206140
M3 - Article
SN - 1932-6203
VL - 13
SP - e0206140-N/A
JO - PLoS One
JF - PLoS One
ER -