TY - JOUR
T1 - Assessment of the E3C corpus for the recognition of disorders in clinical texts
AU - Zanoli, Roberto
AU - Lavelli, Alberto
AU - Verdi Do Amarante, Daniel
AU - Toti, Daniele
PY - 2023
Y1 - 2023
N2 - Disorder named entity recognition (DNER) is a fundamental task of biomedical natural language processing, which has attracted plenty of attention. This task consists in extracting named entities of disorders such as diseases, symptoms, and pathological functions from unstructured text. The European Clinical Case Corpus (E3C) is a freely available multilingual corpus (English, French, Italian, Spanish, and Basque) of semantically annotated clinical case texts. The entities of type disorder in the clinical cases are annotated at both mention and concept level. At mention -level, the annotation identifies the entity text spans, for example, abdominal pain. At concept level, the entity text spans are associated with their concept identifiers in Unified Medical Language System, for example, C0000737. This corpus can be exploited as a benchmark for training and assessing information extraction systems. Within the context of the present work, multiple experiments have been conducted in order to test the appropriateness of the mention-level annotation of the E3C corpus for training DNER models. In these experiments, traditional machine learning models like conditional random fields and more recent multilingual pre-trained models based on deep learning were compared with standard baselines. With regard to the multilingual pre-trained models, they were fine-tuned (i) on each language of the corpus to test per-language performance, (ii) on all languages to test multilingual learning, and (iii) on all languages except the target language to test cross-lingual transfer learning. Results show the appropriateness of the E3C corpus for training a system capable of mining disorder entities from clinical case texts. Researchers can use these results as the baselines for this corpus to compare their own models. The implemented models have been made available through the European Language Grid platform for quick and easy access.
AB - Disorder named entity recognition (DNER) is a fundamental task of biomedical natural language processing, which has attracted plenty of attention. This task consists in extracting named entities of disorders such as diseases, symptoms, and pathological functions from unstructured text. The European Clinical Case Corpus (E3C) is a freely available multilingual corpus (English, French, Italian, Spanish, and Basque) of semantically annotated clinical case texts. The entities of type disorder in the clinical cases are annotated at both mention and concept level. At mention -level, the annotation identifies the entity text spans, for example, abdominal pain. At concept level, the entity text spans are associated with their concept identifiers in Unified Medical Language System, for example, C0000737. This corpus can be exploited as a benchmark for training and assessing information extraction systems. Within the context of the present work, multiple experiments have been conducted in order to test the appropriateness of the mention-level annotation of the E3C corpus for training DNER models. In these experiments, traditional machine learning models like conditional random fields and more recent multilingual pre-trained models based on deep learning were compared with standard baselines. With regard to the multilingual pre-trained models, they were fine-tuned (i) on each language of the corpus to test per-language performance, (ii) on all languages to test multilingual learning, and (iii) on all languages except the target language to test cross-lingual transfer learning. Results show the appropriateness of the E3C corpus for training a system capable of mining disorder entities from clinical case texts. Researchers can use these results as the baselines for this corpus to compare their own models. The implemented models have been made available through the European Language Grid platform for quick and easy access.
KW - Information extraction
KW - machine learning
KW - natural language processing for biomedical texts
KW - Information extraction
KW - machine learning
KW - natural language processing for biomedical texts
UR - http://hdl.handle.net/10807/249356
U2 - 10.1017/S1351324923000335
DO - 10.1017/S1351324923000335
M3 - Article
SN - 1351-3249
SP - 851
EP - 869
JO - Natural Language Engineering
JF - Natural Language Engineering
ER -