TY - JOUR
T1 - A one parameter family of Volterra-type operators
AU - Battistoni, Francesco
AU - Molteni, Giuseppe
PY - 2024
Y1 - 2024
N2 - For every α ∈ (0, +∞) and p, q ∈ (1, +∞) let T_α be the operator L^p[0, 1] → L^q [0, 1] defined via the equality (T_α f )(x) := \int_0^{x^α} f (y) dy. We study the norms of Tα for every p, q. In the case p = q we further study its spectrum, point spectrum, eigenfunctions, and the norms of its iterates. Moreover, for the case p = q = 2 we determine the point spectrum and eigenfunctions for T_α^* T_α, where T_α^* is the adjoint operator.
AB - For every α ∈ (0, +∞) and p, q ∈ (1, +∞) let T_α be the operator L^p[0, 1] → L^q [0, 1] defined via the equality (T_α f )(x) := \int_0^{x^α} f (y) dy. We study the norms of Tα for every p, q. In the case p = q we further study its spectrum, point spectrum, eigenfunctions, and the norms of its iterates. Moreover, for the case p = q = 2 we determine the point spectrum and eigenfunctions for T_α^* T_α, where T_α^* is the adjoint operator.
KW - Volterra Operator
KW - spectrum
KW - Volterra Operator
KW - spectrum
UR - http://hdl.handle.net/10807/302536
U2 - 10.1007/s12215-024-01171-8
DO - 10.1007/s12215-024-01171-8
M3 - Article
SN - 0009-725X
SP - N/A-N/A
JO - Rendiconti del Circolo Matematico di Palermo
JF - Rendiconti del Circolo Matematico di Palermo
ER -